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SUMMARY 

A simple hypothesis i s  offered as an explanation f o r  t he  l a rge  d iscrep-  
ancy between theory and experiment of ax ia l ly  compressed c y l i n d r i c a l  s h e l l s .  
It i s  suggested t h a t  the  very low experimental buckling loads (when buckling 
does not occur a t  the ends) a r e  caused by loca l  "flat  spots ."  
of imperfection i s  given and the buckled mode shape i s  discussed. These 
arguments a r e  a l s o  applied t o  o ther  common s h e l l  buckling problems. 

A c r i t i c a l  s i z e  

IN'T RODUC T I  ON 

The following simple ideas  are offered on the problem of the buckling of 
an a x i a l l y  compressed c y l i n d r i c a l  s h e l l .  These q u a l i t a t i v e  ideas hopefully 
w i l l  give some f u r t h e r  clues t o  the explanation of the discrepancy between the 
t h e o r e t i c a l  and experimental buckling loads of  a cylinder.  

It i s  recognized by most engineers concerned with t h i s  problem t h a t  imper- 
f ec t ions  of many types cause the lowering of the  buckling load ( see  r e f .  1 f o r  
a h i s t o r y  of t h i s  problem). 
imperfections i n  the  s h e l l  geometry r a t h e r  than those associated with boundary 
conditions, loading, mater ia l  propert ies ,  etc. These remarks apply t o  conven- 
t i o n a l l y  manufactured, moderately long cylinders i n  which the  typ ica l  experi-  
mental buckling load i s  we l l  below the theo re t i ca l  loads (say, 10-40 percent 
of the t h e o r e t i c a l  load where O(a/h) = 1000). 

The remarks presented here in  p e r t a i n  only t o  

NOTATION 

a radius  of cyl inder  

b imperfection dimension 

D bending r i g i d i t y  

E Young s modulus 

h shell thickness  

axial  s t r e s s  r e s u l t a n t  NX 



circumferent ia l  stress r e s u l t a n t  N e  

c r i t i c a l  load, p o s i t i v e  i n  compression Per  

R radius of sphere 

6 deviat ion i n  radius  

V Poisson's r a t i o  

c r i t i c a l  s t r e s s ,  p o s i t i v e  i n  compression 'cr 

DISCUSSION OF IMPERFFCTIONS 

Axial ly  Loaded Cylinders 

The f irst  point  concerns an idea  t h a t  occurs t o  designers  who are f a m i l -  
iar with the  t y p i c a l  experimental spread of buckling loads. This idea  i s  t h a t  
it might be b e t t e r  t o  design a cyl inder  with a noncircular  c ros s - sec t iona l  
shape having a lower t h e o r e t i c a l  buckling load i f  that  load could be r e l i a b l y  
predicted so t h a t  the  design load could be above t h a t  f o r  a c i r c u l a r  cylinder.  
The correspondence between experiment and theory i s  q u i t e  good f o r  t h e  buck- 
l i n g  of f l a t  p l a t e s ,  s o  the  s implest  shape t o  look a t  i s  a square cylinder.  
L e t  us choose the  square dimensions such t h a t  t he  c ros s - sec t iona l  area i s  the  
same as t h a t  f o r  the  comparable c i r c u l a r  cyl inder  as shown i n  sketch (a ) .  

Sketch (a) 

The buckling load of t he  square cy l inde r  i s  given by ( r e f .  2, p. 355) 
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The buckling load f o r  t h e  c i r cu la r  cyl inder  i s  

has a " f l a t  spot" which i s  assumed t o  be square (see 
sketch ( b ) )  . 
cons t ra in ts  on both displacement and r o t a t i o n  so, f o r  conven- 
ience, the edges a re  assumed t o  be simply supported. The 
appl ied load i s  assumed t o  be uniformly d i s t r i b u t e d  over t h e  
f l a t  spot  before buckling s o  t he  buckling stress of t he  p l a t e  
i s  

The edges of  the f la t  spot  are subject  t o  e l a s t i c  

Eh 
a 

Per = 0.6 - (2nah) M 3.8 Eh2 

To have t h e  same volume of mater ia l  f o r  both cyl inders  t h e  p l a t e  thickness  i s  
d i f f e ren t ;  therefore ,  hs = G / 2 ) h .  The r a t i o  of t he  buckling loads becomes 

Per h - w 2 -  a 
'cr 
- 

Sketch ( b j  

Eh2 3.6 - 4r( 2D 
hb2 b2 

ucr = - 

If t h i s  c r i t i c a l  s t r e s s  i s  g rea t e r  than O.G(Eh/a) ( t h e  c r i t i c a l  stress f o r  a 
pe r fec t  cy l inder ) ,  the  imperfection would not be expected t o  a f f e c t  t he  buck- 
l i n g  load of t he  cylinder.  
l e a s t  l o c a l  buckling would be expected below the  t h e o r e t i c a l  load. 
l e t  

However, i f  i t  is less than 0.6(Eh/a), then a t  
Therefore, 

Eh 3.6 = 0.6 - 
L 2  a 

c r  U 

which gives 
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Therefore, i f  t h i s  c r i t i c a l  dimension of t h e  f l a t  spot,  bcr, i s  about equal  
t o  the  c h a r a c t e r i s t i c  length of t he  s h e l l  ( t h e  length required f o r  axisymmet- 
r i c  bending e f f e c t s  t o  damp o u t ) ,  l o c a l  buckling can occur. Since bcr a l /b2 
a small increase i n  the  s i z e  of t h e  f l a t  spo t  would allow l o c a l  buckling t o  
occur a t  loads f a r  below the  t h e o r e t i c a l  load. O f  course, one wonders whether 
a p l a t e  of such small dimensions i s  within the  t h i n  p l a t e  theory. The r a t i o  
b/h f o r  t h e  p l a t e  i s  This 
value i s  w e l l  within the  range of t h i n  p l a t e  theory. 

b/h = (2.4 &h)/h = 2.4 m h  w 75 f o r  a/h = 1000. 

I f  t h e  s h e l l  has only one l a r g e  f l a t  spot ,  l o c a l  buckling could occur 
without causing a general  col lapse of t he  cyl inder .  This has been suggested 
i n  reference 3 which gives  l imi t ed  experimental r e s u l t s  f o r  laboratory-  
produced cyl inders  with s i n g l e  imperfections. Although these  lowered t h e  
buckling loads, t h e  l a r g e r  imperfections caused l o c a l  i n s t a b i l i t y  before  gen- 
e r a l  i n s t a b i l i t y  occurred. However, i f  a number of similar imperfections a r e  
sca t t e red  over t he  s h e l l  or i f  t he  l o c a l  buckling i s  propagated by the  l o c a l  
disrupt ion of s t r e s s  and de f l ec t ion ,  then the  o v e r a l l  buckling load of t h e  
cylinder i s  g r e a t l y  reduced. 

Although the  f l a t  spot  has been assumed t o  be a simply supported square 
p l a t e ,  the same order of magnitude of c r i t i c a l  s i z e  would be obtained f o r  many 

somewhat similar shapes and edge condi- 
t i ons .  (The appendix gives  an estimate 
of t h e  buckling stress of a diamond shaped 
p l a t e . )  To gain a b e t t e r  f e e l i n g  of t he  

h c r i t i c a l  s i ze ,  consider a c i r c u l a r  c ross  
s e c t i o n  with an imperfection as shown i n  
sketch ( c ) .  The radial dev ia t ion  6 i s  
given by 

6 = a -,,a2 - ( 1 . 2 K h ) 2  % O.7h 

Consider t h e  less  favorable  imperfection 
Sketch ( e )  shown i n  sketch ( d ) .  Here, t h e  r a d i a l  

devia t ion  6 v a r i e s  i n  an o s c i l l a t i n g  
manner and i s  given by 

6 = a - J ( a  + - 1.44ah 

o r  

Therefore 

Sketch (d )  
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This shape, with the sharp corners, i s  u n r e a l i s t i c  s o  a reasonable statement 
might be t h a t  t h e  radius  should be accurate within, say, +h/2 t o  avoid the  
p o s s i b i l i t y  of a c r i t i c a l  f l a t  spot.  

To o f f e r  a seemingly reasonable hypothesis f o r  the o v e r a l l  buckling pro- 
cess, l e t  us consider t h e  loading process of two cyl inders .  The f i r s t  i s  a 
pe r fec t  c i r c u l a r  cylinder;  the  second cylinder has some region t h a t  i s  pe r fec t  
and has f l a t  spots  of a c r i t i c a l  s i z e  i n  the remaining area.  I n  a pe r fec t  
region or cyl inder  t he  imperfections a r e  assumed t o  be of a neg l ig ib l e  s i z e  
and t o  have an i n s i g n i f i c a n t  e f f e c t  on the  behavior of the  region or cyl inder  
under the  p a r t i c u l a r  loading being invest igated.  According t o  the  c l a s s i c a l  
theory, as t h e  f i r s t  cyl inder  i s  uniformlyloaded, i t  undergoes uniform a x i a l  
shortening and s t r e s s - f r e e  r a d i a l  expansion (away from the  ends) .  
c l a s s i c a l  buckling s t r e s s  (O.G(Eh/a) ) i s  reached, an equi l ibr ium configurat ion 
i n  which the  de f l ec t ion  var ies  s inusoid ly  i n  a checkerboard fash ion  can e x i s t .  
This configurat ion extends over the e n t i r e  s h e l l .  For t he  second cyl inder ,  

When the  

region 

t he  theory for c y l i n d r i c a l  s h e l l s  can only 
descr ibe the  behavior o f  the pe r fec t  por t ion  of 
the  s h e l l .  A s  t h e  cyl inder  i s  loaded, assume t h a t  
the imperfect region buckles a t  a load wel l  below 
the  c l a s s i c a l  load. A t  t h i s  load, i s o l a t e  the  
buckled region and pos tu l a t e  what happens t o  the  
remaining p a r t  of t he  cyl inder  ( see  sketch ( e ) ) .  
Since t h e  uniform compressive s t r e s s  throughout 
the cyl inder  i s  much l e s s  than 0.6(Eh/a), cy l in-  
d r i c a l  s h e l l  theory says t h a t  a s inuso ida l ly  vary- 

and, i n  f a c t ,  the displacements and s t r e s s e s  w i l l  
decay exponentially as t h e  d i s t ance  from the  buck- 
led  region increases ( see  ref. 4, ch. 5 ) .  However, 
the  buckled region may propagate i f  t h e  d i s rup t ion  
of s t r e s s  and def lec t ion  or i n e r t i a  forces  near 
the buckled region cause l o c a l  i n s t a b i l i t y ;  or a 
new buckled region may form i n  a d i f f e r e n t  pa r t  of 

H1nterfoce i ng  de f l ec t ion  p a t t e r n  cannot be i n  equilibrium forces 

t he  s h e l l  i f ,  for instance,  a small  increase  i n  
load C B L ~ S ~ C .  9 t h ~ ~ -  flat spcts t o  bezcme cf c r i t i c a l  Sketch ( e )  

s i z e .  
c a l  mode shape a t  loads below the  c l a s s i c a l  load and, i n  f ac t ,  t he re  i s  no 
reason t o  expect i t  even a t  loads close t o  the  t h e o r e t i c a l  load i f  the  buck- 
l i n g  s tar ts  l o c a l l y  r a t h e r  than simultaneously over the  e n t i r e  s h e l l .  Indeed, 
something would appear t o  be wrong with the theory if t h e  c l a s s i c a l  mode shape 
were obtained experimentally a t  loads much l e s s  than the  c l a s s i c a l  load. It 
seems t o  t h e  author, therefore ,  t h a t  t he re  a r e  reasons t o  expect t he  mode 
shape t o  be much harder t o  co r re l a t e  experimentally with theory than the  
buckling load. 

The main poin t  here  i s  t h a t  t he re  i s  no reason t o  expect t he  t h e o r e t i -  

Applications t o  Other S h e l l  Problems 

If these  ideas  a r e  val id ,  they should apply t o  o the r  s h e l l  problems as 
well .  
a f l a t  spot  t o  be a simply supported c i r cu la r  p l a t e .  

For t h e  ex te rna l ly  pressurized spher ica l  s h e l l  (sketch ( f )  ), consider 
I ts  buckling s t r e s s  i s  
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given by ( r e f .  2, p. 391) 

Eh2 - ( 4 )  = 1.54 - 
hb2 b2 ‘cr - 

Equating t h i s  t o  the  c r i t i c a l  s t r e s s  of a sphere 
(ocr = O.G(Eh/R)), we ge t  

Sketch ( f )  

X 

Sketch ( g )  

bcr F* 1.6 ./Rh 

So, one sees  t h a t  the  sphere i s  a t  l e a s t  as s e n s i t i v e  t o  
a f l a t  spot  as the a x i a l l y  loaded cylinder.  Next, con- 
s i d e r  an e x t e r n a l l y  pressurized long cyl inder  (sketch (g)  ) 
where, before buckling, 

Nx = 0 , NB = pa 

Consider t he  f l a t  spot  t o  be a simply supported p l a t e  with 
c r i t i c a l  s t r e s s  

The c r i t i c a l  s t r e s s  f o r  the cyl inder  i s  ( r e f .  4, p. 434) 

Eh‘ = 0.27 - 
‘xcr a2 

so 

b m 3.7a 

Thus under ex terna l  pressure, the cyl inder  i s  not s ens i t i ve  t o  f l a t  spots  
s ince  the  c r i t i c a l  s i z e  i s  of the same order as the  s i z e  of the  s h e l l .  This 
i n s e n s i t i v i t y  agrees with the f a c t  t h a t  c l a s s i c a l  theory and experiment a r e  
i n  r e l a t i v e l y  good agreement for t h i s  loading condition (ref. 5) .  

The f l a t  spot of a cyl inder  subjected t o  tors ion  i s  assumed t o  be a 
simply supported square p l a t e  under pure shear.  I ts  c r i t i c a l  s t r e s s  i s  
( r e f .  2, p. 382) 

Eh2 -rCr M 8.4 - 
b2 

For the s h e l l  ( r e f .  2, p. 504) 
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31 4 1/ 4 

= 6a ($) b M 6h ($1 
For 

Therefore, long cylind 

, b m a  h 1 
a 1000 
- = -  

rs subjected to torsion are not sensitive to this ;YPe 
of imperfection. 
experiment (ref. 2, p. 506). 

Classical theory for this case also agrees quite well with 

CONCLUDING ~ M c w ( s  

A plausible reason has been offered as to why certain types of shells 
under particular types of loading buckle at loads far below those prediCted by 
theory. The hypothesis is that conventionally manufactured shells contain a 
distribution of small regions of essentially zero curvature which can behave 
as flat plates. For some types of shells and loading, these regions can be 
quite small and still initiate local buckling at loads far below the theoreti- 
cal load. In other words, the curved surface of a shell compared to a flat 
surface causes an enormous increase in load-carrying capability for certain 
types of shells and loading conditions but a small deviation in curvature for 
these types causes a large reduction in the load carrying capability. It was 
shown that the radius of an axially loaded cylinder should be accurate to 
within about +h/2 to avoid the possibility of a critical sized flat spot. It 
is interesting that reference 6 shows test results in which the buckling load 
is about 80 percent of the classical value and the accuracy of the radius is 
given to be th/2. 

The axially loaded cylinder and externally pressurized sphere are very 
sensitive to flat spots compared to the other loading conditions considered. 
This corresponds to the fact that the correlation between experiment and 
theory is worse for the axially loaded cylinder and pressurized sphere. One 
way to show whether or not the flat spots are the only cause of the drastic 
reduction in load would be to test some cylinders for which the radius was 
accurate within +h/2 under various types of imperfections in the boundary con- 
ditions, loading, etc., and see whether or not experimental buckling loads 
drastically below the classical loads could be obtained. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., 94035, Jan. 16, 1968 
124-08-06-01-00-21 



A P P E N D I X  

BUCKLING OF A DIAMOND-SHAPED PLATE 

An approximate buckling load of the diamond-shaped plate s.-own below can 
be obtained by using the method of minimum potential energy. The plate is 

~ 

assumed to be under uniaxial compres- 
sion and the edges are simply supported. 
A convenient coordinate system is 

The boundaries are then given by 

5 = tl and q = -I.1 

The total potential energy expression 
in Cartesian coordinates is 

Sketch (h) For the new coordinates, 

(dt  dv) c2 - a2 (dt2 + dv2) + a2 + c2 ds2 = d s  + df = 
4 2 

and 

The total potential now becomes 
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A form for 
and 7 = kl) is 

w that satisfies the displacement constraints (w = 0, g = 21, 

w = wn(sin2 ng - sin2 n)  (sin2 n7 - sin2 n) 
n= 1 

The single summation results from the mode shape being symmetrical. 
ing this into the total potential and performing the integration gives 

Substitut- 

(u+v) = - 
2 c= 

[4m2n2(l+p4) (%-an)2 - (l+P2)2(m2-n2)2ama, 
m=1 n=i 

+ (l+p2)2(m2-n2)(m2%-n2an)(cos 2mtcos 2n + 4sin n sin2 m -1) 1 

+ 12<m4[3(1sm)(l+P2)2 - 4P2(ldm)2 -4(l+p2)2(l+Em)sin2 m cos2 m] 
P l  

where 

sin 2m cos 2n sin 2n cos 2m - sin 2m cos 2m , am = 2n 2m 3 an = a =  II? 2m 

C p = -  
a 

Since we know that 

6 ( U  + v)  = 0 

we can obtain a set of algebraic equations to determine 
truncated after 1, 2, and 3 terms to get some feeling of the convergence 
although it is recognized that this procedure is somewhat dangerous since the 
fact that answers, for different number of terms, are close together may just 
indicate the convergence is very slow rather than that the answers are nearly 
correct. The following table gives the numerical results. 

wm. The series was 

\ 
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0.75 
1.0 
1.25 

SO, t a k i n g  P = 1.0, 

One term Two terms Three terms 

9.86 8.98 8.82 
8.46 7-59 7.55 
9.28 8.35 8.30 

7.5.2n 
( 2 ~ ) ~ h  

‘cr e 

The c r i t i c a l  s i ze ,  b = 2c, for an ax ia l ly  loaded cy l inder  i s  given by 

b M 3 . 3 J a h  

Therefore,  the c r i t i c a l  s i z e  i s  seen t o  be of the same order of magnitude as 
a square f la t  spot for the  case of an axial ly  loaded cylinder. 
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